If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-3=13
We move all terms to the left:
q^2-3-(13)=0
We add all the numbers together, and all the variables
q^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 39(11x+11)+31=180 | | 10x+2x+5=3(3x+x) | | -64-10x=-14x+60 | | 2x-245=-12x+63 | | (4x-31)=119 | | 4x+32=64+2x | | -254+6x=88-13x | | 2(x-6=x-14 | | 11x-12=28+9x | | 11+(-22)=7x-33-6x | | x-58=35-2x | | -172+5x=75-8x | | 4x^2+10x=7 | | 1/2b-11=21 | | 2h^2+2=-126 | | m−13.84=4.26 | | 30=x13+x^2 | | 2u+18=-8(u+9) | | 11x-41=58 | | 84=7x-3x | | ((7x+4.5)^(5/3)/(2x+8.414)^2/3)=32.5 | | m+290=-305 | | 20=√625-x^2 | | 42=7x-3x/2 | | 100x+200=75x+350 | | 6x+1+29+90=360 | | 5=1/2x=5 | | w-6=25 | | 49+90+x=360 | | 49+x=360 | | -8−7j=-8j | | 9^6x+2=199 |